MATH 208, EXAM 3

SECTION 150
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Instructions.
¢ You should have 8 pages on which 6 problems are printed.

¢ You have 50 minutes: the exam will begin on the half-hour and end promptly,
50 minutes later.

e Show all work unless otherwise specified. What you write on the page must
convince me that you understand the problem and its solution.

e Read each problem carefully.

¢ You do not need to simplify your answers, unless the instructions for a
problem indicate otherwise.

e You are not allowed a calculator, notes, textbooks, or access to any electronic
devices.

e Don't panic. Good luck!

Date: Fall 2022.



Here are some things you might find useful.

x = psin¢cos
y=psingsinf
z=pcos¢

dV = p*sin ¢ dpdpd6




Math 208, Exam 3 Initials:

Problem 1 (2 + 8 points). Consider the spiral curve parametrized by
7(t) = (3t,4sint,4cost) for -1<t<3.

(a) Which of the following correctly describes the line tangent to this curve at
the point (0, 0,4)? (There is exactly one correct answer.)

[] 3x+4y+z:0é——’—)\o‘{'0ﬂ» a [ive l x /4@,\&.\
D x =3t,y=4sint,z=4cost ,\;({\ - <’3/4’(5\ )

W <=3t y=4t,z=4 ﬁ[ﬁ\; <3/4/07.

[] L(t)=(0,0,0)+£(0,0,4)

¢4 3,407

(b) Find the arclength of the spiral curve. < 0,6 /4‘7 \
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Initials: Math 208, Exam 3

Problem 2 (8 + 12 points). Let S be the portion of the cylinder x* + y* = 4 lying

above the x y-plane and below the plane z = y. S r-x
(a) Give a parametrization of the surface S. Be sure to give bounds on your < *J
parameters.
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(b) Express the surface area of S as a double integral. Do not evaluate your
integral.
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Math 208, Exam 3 Initials:

Problem 3 (15 + 5 points). Consider the following vector field in three dimensions.

F= (e_zy,?)z — 2xe_2y,3y)

(a).Clearly state what it means for g to be a potential function for F, and then
find such a potential function g. (Show your work.)
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(b) Compute the line integral [, F - d over any path C from (1,0, ) to (0,1,2).
Briefly explain why your answer depends only on the endpoints of C and not
on its behavior between the endpoints.
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Problem 4 (10 points). Consider the rectangle R in the plane with vertices (2, -1),
(5,-1), (5,3), and (2,3) and the vector field F = <3y - e"z, e"Z”z). Use Green’s

Theorem to express the circulation of F around the boundary of R (oriented counter-
clockwise) as a double integral. Do not evaluate your integral.
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Math 208, Exam 3

Initials:

Problem 5 (20 points). Compute theline integral /. F-d7,where F = (—2¢”, —xz, xy)
and C is the straight-line path from (1,0, 0) to (0,2, 3).
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Problem 6 (20 points). Compute the flux of the vector field F = (—x, 2y, 3z) over the
portion of the plane 3x + 3z = 10 that lies above the unit square 0 < x <1,0< y <1,
oriented with upward-pointing normal vector.
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