Math 208 Final Exam

Initials:

Name (write clearly) __&ﬁ.m

NU ID number

Circle the name and time of your lecture:

Norwood 8:30 Norwood 9:30  Schafhauser 11:30 Rebarber 12:30 Burns 6:30  Yang 208H.

Instructions

e There are 15 questions on 17 pages (including
this cover sheet and the formula sheet on the
second page).

e No books, notes or calculator are allowed.
e Turn off all communication devices.

¢ Show all your work and explain your answers.
Unsupported answers will receive little credit.

e If specified, use the method required by each
problem. Alternate methods will not receive
full credit.

e In multi-part problems, the parts might not be
worth the same number of points.

e You have 2 hours to complete the exam.

Good luck !

The formulas on the next page might or might not be useful:

Question | Out of | Score
1 10
2 10
3 12
4 12
5 12
6 12
7 16
8 12
9 18
10 16
11 13
12 12
13 14
14 17
15 14
TOTAL 200
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x=psingcos@, y=psingsinf®, z=pcosg, dV:pzsind)dpd(pdG.
/ﬁ-d?:ﬂ://curl(ﬁ)-(?’sx'r',)dsdt
(4

The flux of F over the boundary of W is equal to the integral of the divergence of F over W.

D = fufyy = faye
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1. (10 points)
(a) Find a normal vector to the plane containing the points (0, 1,3), (—2,0,—1) and (1, 1,0).

,Dj,: (_g) -, 4y /G’;: <1,0,-3% (t me\ﬂm&m)

.11 B
n={%* 3 -
A %= 1@) -3 z
\ : ’3‘3‘1 k 4 (6+1)+ %1 = ¢ 3,-0,1)

(b) Find an equation for the plane in part (a).

3(x-0)-lo(@x-1) +1(2-3)=0
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2. (10 points) Match each vector field formula with the corresponding graph.

(@ (0,x)

(i) (0,y)

(iii) (x,y)
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3. (12 points)
(a) Find a number o such that 2+ j+ 3k is perpendicular to 27— 6k.

Ao+ 2 -1§ =0
2d = 14,
A= g

(b) Find the cosine of the angle between the two vectors =2+ 3f+ 6k and ¥ =1+ 2f— k.

LWwO-= —d+6-6 <5

-
—

Vieqe3e' Vivwm o
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4. (12 points)

(a) Find the directional derivative of f(x,y,z) = ze” +x% at P = (5,0,—1) in the direction from the
point P to the point Q = (4,1,2).

';3: <:()l.3>
yuw'

@: g, 204, @Y¥) V@.(S,O;\): <10,-1,1Y

Did0n= €10-, 1y &hnit3y g

m ST

(b) What is the direction of maximum rate of change of f at P? Give the direction as a unit vector.

x <10,-4 1)
Vioa
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5. (12 points)

‘(a) Draw the region of integration for

e2 rln y
/ dxdy.
1 Jo

e™ '

1§/“ #2dny o yze™
—
2

’ﬂﬁj:e‘*ﬁ otzdny = )

(b) Switch the order of integration for this integral. Do not evaluate.

05 dydu

o e
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6. (12 points)
(a) Find the local linearization of f(x,y) = (xy*+7)3/2 at the point (2, 1).

&= (o DAy s & (3, N=3(9)%
g 3(#5*4)’3“5 )8@(3 ‘)— gq’<"l')

‘= 18

i

L]

o

L4

3

an: (2+1)%: 3=

8(055)? ‘Th% (ru-2) +13(y-1)

(b) For f(x,y) in part (a), use the local linearization to approximate f(2.05, .9). Leave your answer
as a number, but there is no need to simplify it.

2(2.05,:9) T B+ L (:05)+13(=1)
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7. (16 points) (a) Find both critical points of f(x,y) = 3xy —x* —y* +3.

80(: 3%-30":0:% M= e’

8=

3-3y*0=5 0=y s w=o's o ak)

T2 ool
(0,0) amd (Y1) M=o M=)

(b) Use the Second Derivative Test to classify each of the critical point(s) as a local maximum,
local minimum, or saddle point.

Sz =y e LD

o0 =]
'g%: “by 0 > o
ry= 3 . -

0 -3 36-9%0

00886  Qocal sy
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8. (12 points) Use Green’s Theorem to evaluate the line integral

/C(ny—3)dx+(x2 +x+y)dy,

where C'is the close curve consisting of the line segment from (0, 0) to (2,0), followed by the line
segment from (2,0) to (0,3), followed by the line segment from (0,3) back to (0,0)

Sg[@””’)‘aﬂdﬁ N /L
R

= Sélcm-—--g(a)(a): 3

. 3do
MMmW)M’gWM' go ‘go iy I
=33 das 30307 633
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9. (18 points) Let W be the part of the solid ball x*> +y 4+ z*> < 16 which is in the octant with
2 £
{x#0,y® 0,z <0}.
(a) Find an integral for the volume of W in spherical coordinates. Do not evaluate.
) & -
[ o 2¢05 Tihem
F/

—

?\K % pocnd dp dé de

3 J%
\ 9

N
0 io
/3'

/’

(b) Find an integral for the volume of W in cartesian coordinates. Do not evaluate.

S %‘ﬁ& de dy dox

0 Yo-u™ 0
SRR
40 ATemmy

(oo ara dan cowack 6R4)
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10. (16 points) Let S be that part of the surface z = xy + 5 which is above the square
s e BT A

in the (x,y) plane. Assume S is orierited with normals that have a positive & component. Find the
flux of the vector field F'(x,y,z) = (x,0,xy+ 1) through S.

. Tls)= <5, stas)

Z= 5445 L 3* Iy
fg: <‘)O) + >

G=  <€0,1,s5)
Coxte s R(0-30) R () =451}
(.:S\yf:: (“t)'g_,l>

l---\
% 5 Fedts1)dsdd = S,a S; <S,0,£541+ &4;5, 15 drdt

\ O

= §,° g;ésh-kw Jdsdt =1
el
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11. (13 points) Use Lagrange multipliers to find the maximum and minimum values of f(x,y) =
x+ 3y subject to the constraint x> + y*> =%000,

) = A dn %= 4 A
3= Ay § *f?/‘é-“‘

I)f‘*g’.-. RO 3

(B )’s 1tz 1000 gq: ltoo = =10, 40

fy= €0, (60)
9(80,60)* ao.nsg_jm
jao-@=(300 " % (3060

—
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12. (12 points) Let F(x,y,z) = —3yi + xj and let C be that part of the curve y = x* from (—1,1) to
(1,1). Evaluate the line integral fcﬁ -dr.

re=t
| 'j:f: |
§ -3t tatds = _S' -t g

1, - — |
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13. (14 points) Let R be the solid region bounded below by z = x +y* and above by z =32 — (2 +).
Let S be the boundary surface of R. Use the Divergence Theorem to find the outward flux of the

vector field F = (33 +y3)i+ (3° +x2) j + (v — %)k through the surface S. Junf. oot up th UW
2 4 32-r* ' - E
g (3 35“>d¥ rdrd e o 2
0 ? '—% =4

(0]
- S” f 32:‘3 d3 dedo

2 r)
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14. (17 points) Let C be the curve x* + y> = 25 in the plane z = 1, oriented counterclockwise when
viewed from above. Let F = (z,x, y). Let S be the disk enclosed by C, that is, the surface defined
by x> +y? < 25 in the planez = 1.
(a) Find parametric equations for S, with parameters s and ¢.
w=scmt gy
Y=Sadt g cpeqgn

€=1

(b) Use Stokes’ Theorem to find a flux integral which is equivalent to

/F-d?.
C

‘Write the integral completely in terms of s and z. Do not evaluate the integral.

Ts,4= (seovt, sount, 17
s < emt, wot, 0
?‘,‘ ~ {-Samt, Stwot 0%
Gate = ‘i(o)-a‘co)-fﬁs
g Bz | 4 %‘ _ T()-F+ Rz <LL1Y
2 M
Wg)ﬁjxa) =S

ag SZ S ds ok

1!
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15. (14 points) (a) Show that this vector field is conservative:

(b) Find a potential function for the vector field in part (a).

- a - AR
= %—:90@' g‘('é_*'q*nnm
b 50 4

(c) Find the work done by the force field in part (a) in moving an object from (2,5) along a curve
Cto(2,1).

9(aN-§(2,5) = Geu)-(2s): H-%: @



