MATH 208-FINAL EXAM

December 12, 2016

Name (Prin	١.	
name (Fin):	

Your Professor and Section (Circle Both):

S. Akesseh 002 J. DeVries 101 Y. Jin 012 A. Larios 010 K. Lee 007

A. Peterson 003 M. Rammaha 004 R. Rebarber 005 C. True 001, 006, 008, 009

A. Windle 011

INSTRUCTIONS:

• There are 8 pages of questions and this cover sheet.

- SHOW ALL YOUR WORK. Partial credit will be given only if your work is relevant and correct.
- Simplify your answers as much as possible.
- This examination is closed book. Calculators that perform symbolic manipulations such as the TI-89, TI-92 or their equivalents, are **not permitted**. Other calculators may be used. Turn off and put away all **smart watches**, **phones**, and any devices capable of wireless communication.

Question	Points	Score	
1	16		
2	14		
3	12		
4	14		
5	14		
6	24		
7	20		
8	12		
9	12		
10	14		
11	12		
12	12		
13	12		
14	12		
Total	200		

- 1. [16 Points] Consider the vectors: $\overrightarrow{A} = 3\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k} = \langle 3, 2, 1 \rangle$, $\overrightarrow{B} = -2\overrightarrow{i} + \overrightarrow{k} = \langle -2, 0, 1 \rangle$.
 - a) [4 Points] Find $\cos \theta$, where $0 \le \theta \le \pi$ is the angle between between \overrightarrow{A} and \overrightarrow{B} .

b) [4 Points] Compute $\overrightarrow{A} \times \overrightarrow{B}$.

c) [4 Points] Find the equation (in rectangular coordinates) of the plane \mathcal{P} that contains the point (2,-1,-1) and is parallel to the vectors \overrightarrow{A} and \overrightarrow{B} .

d) [4 Points] Find the area of the parallelogram determined by the vectors \overrightarrow{A} and \overrightarrow{B} .

2	[14 Doints]	Find and classif	r all critical	noints of the function	on: $f(x, y)$	$-m^3$	$3a^2 + 6a$
Ζ.	14 Points	ring and classii	y an critical	points of the function	on: $I(x,y)$	$y = x^{2} - 3xy$	$-\frac{1}{2}y^{2} + 6y$.

3. [12 Points] Find the equation of the tangent plane to the surface $S: x^2 - y + z^2 - 6 = 0$ at the point (2, -1, 1).

4. [14 Points] Use Lagrange multiplier to find the maximum and minimum values of f(x, y, z) = x + 2y + 3z; subject to the constraint $g(x, y, z) = x^2 + \frac{1}{2}y^2 + \frac{1}{2}z^2 - 108 = 0$.

- 5. [14 Points] Consider the function $f(x,y) = x^2 e^{y-1}$
 - a) [8 Points] Find $f_{\overrightarrow{u}}(2,1)$, the directional derivative of f at (2,1) in the direction a unit vector \overrightarrow{u} , where \overrightarrow{u} is in the direction of: $3\overrightarrow{i}-4\overrightarrow{j}=\langle 3,-4\rangle$.

b) [6 Points] Find the maximum rate of change of f at the point (2, 1).

6. [24 Points] Let W be the solid that lies **above** the cone: $z = \sqrt{3}\sqrt{x^2 + y^2}$, and **under** the sphere: $x^2 + y^2 + z^2 = 16$. Express, **but don't evaluate**, the volume of W as:

a) [12 Points] an integral in **cylindrical coordinates**.

b) [12 Points] an integral in spherical coordinates.

- 7. [20 Points] Consider the vector field $\overrightarrow{F}(x,y) = 2xe^y \overrightarrow{i} + (3y^2 + x^2e^y) \overrightarrow{j} = \langle 2xe^y, 3y^2 + x^2e^y \rangle$.
 - a) [6 Points] Without finding a potential function, **carefully** show that \overrightarrow{F} is a conservative vector field on \mathbb{R}^2 , i.e., \overrightarrow{F} is path-independent.

b) [8 Points] Find a potential function f so that $\overrightarrow{F}(x,y) = \nabla f(x,y)$.

- c) [6 Points] Find $\int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r}$, the work done by \overrightarrow{F} in moving an object from (1,0) to (3,1) on any piecewise smooth plane curve \mathcal{C} .
- 8. [12 Points] Find $\int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r}$, the work done by the force field $\overrightarrow{F}(x,y,z) = y\overrightarrow{i} + 3xy\overrightarrow{j} 4z\overrightarrow{k} = \langle y, 3xy, -4z \rangle$ in moving an object on the **line segment** from (1,0,0) to (3,4,2) in \mathbb{R}^3 .

9. [12 Points] **Sketch** the region of integration in the following integral, pass to polar coordinates and $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} e^{x^2+y^2} \, dy dx.$ evaluate the resulting integral:

10. [14 Points] Let Ω be the solid region given by: $x^2 + y^2 \le 1$, $0 \le z \le 4$. Note that the boundary of Ω is the **closed** cylinder \mathcal{S} , oriented **outward**, where \mathcal{S} consists of three surfaces:

 $S_1: x^2 + y^2 = 1, \ 0 \le z \le 4,$ $S_2: x^2 + y^2 \le 1, \ z = 0,$ $S_3: x^2 + y^2 \le 1, \ z = 4.$ Use the **divergence theorem only** to find $\int_{\mathcal{S}} \overrightarrow{F} \cdot d\overrightarrow{A}$, the flux of the vector field: $\overrightarrow{F}(x, y, z) = x^3 \overrightarrow{i} + 1$ $y^3\overrightarrow{j} + xy\overrightarrow{k} = \langle x^3, y^3, xy \rangle$ out of the closed surface \mathcal{S} . (Tip: You'll need to pass to cylindrical coordinates

to evaluate the resulting integral).

11. [12 Points] **Sketch** the region of integration in the following integral, and **reverse** the order of integration. You **need not evaluate** the resulting integral: $\int_0^1 \int_{\sqrt{y}}^1 \cos(x^3) \, dx \, dy.$

12. [12 Points] Let C_1 , C_2 be the curves given by:

$$C_1: x = \sqrt{4 - y^2}, -2 \le y \le 2,$$
 $C_2: x = 0, -2 \le y \le 2,$

and $C = C_1 \cup C_2$ is oriented counterclockwise. Let Ω be the region in \mathbb{R}^2 enclosed by C and $\overrightarrow{F}(x,y) = (-y + \cos^6 x) \overrightarrow{i} + 3x \overrightarrow{j} = \langle -y + \cos^6 x, 3x \rangle$. By using **Green's Theorem only**, find the value of the line integral: $\int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r}$.

13. [12 Points] Let \mathcal{S} be the portion of the paraboloid $z=1-x^2-y^2,\ z\geq 0$, oriented upward. By directly evaluating the surface integral $\int_{\mathcal{S}} \overrightarrow{F} \cdot d\overrightarrow{A}$, find the flux of \overrightarrow{F} through \mathcal{S} , where $\overrightarrow{F}(x,y,z)=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k}=\langle x,y,z\rangle$. (Hint: Pass to polar coordinates after setting up the surface integral).

14. [12 Points] Let \mathcal{C} be the curve that consists of line segments from P(1,0,0) to Q(0,1,0), Q to R(0,0,2), and from R back to P (note that \mathcal{C} is the boundary of a triangle in the plane 2x + 2y + z - 2 = 0). Use **Stokes' Theorem** to find, **but don't evaluate**, a double iterated integral in terms of x and y that gives the circulation of the vector field $\overrightarrow{F}(x,y,z) = yz\overrightarrow{i} - xz\overrightarrow{j} + z^2\overrightarrow{k} = \langle yz, -xz, z^2 \rangle$ around \mathcal{C} .