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Exam 2 Outline (Motivating Questions) 
10.8 Lagrange Multipliers 

• What geometric condition enables us to optimize a function 
𝑓 = 𝑓(𝑥, 𝑦) subject to a constraint given by 𝑘 = 𝑔(𝑥, 𝑦) , where 𝑘 is a constant? 

• How can we exploit this geometric condition to find the extreme values of a 
function subject to a constraint? 

11.1 Double Integrals 
• What is a double Riemann sum? 
• How is the double integral of a continuous function 𝑓 = 𝑓(𝑥, 𝑦) defined? 
• What are two things the double integral of a function can tell us? 

11.2 Iterated Integrals 
• How do we evaluate a double integral over a rectangle as an iterated integral, 

and why does this process work? 
11.3 Double integrals over general regions 

• How do we define a double integral over a non-rectangular region? 
• What general form does an iterated integral over a non-rectangular region 

have? 
11.4 Applications of double integrals 

• If we have a mass density function for a lamina (thin plate), how does a 
double integral determine the mass of the lamina? 

• How may a double integral be used to find the area between two curves? 
• Given a mass density function on a lamina, how can we find the lamina's 

center of mass? 
11.5 Double integrals in polar coordinates 

• What are the polar coordinates of a point in two-space? 
• How do we convert between polar coordinates and rectangular coordinates? 
• What is the area element in polar coordinates? 
• How do we convert a double integral in rectangular coordinates to a double 

integral in polar coordinates? 
11.7 Triple integrals 

• How are a triple Riemann sum and the corresponding triple integral of a 
continuous function 𝑓 = 𝑓(𝑥, 𝑦, 𝑧) defined? 

• What are two things the triple integral of a function can tell us? 
11.8 Triple integrals in Cylindrical and Spherical coordinates 

• What are the cylindrical coordinates of a point, and how are they related to 
Cartesian coordinates? 
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• What is the volume element in cylindrical coordinates? How does this inform 
us about evaluating a triple integral as an iterated integral in cylindrical 
coordinates? 

• What are the spherical coordinates of a point, and how are they related to 
Cartesian coordinates? 

• What is the volume element in spherical coordinates? How does this inform 
us about evaluating a triple integral as an iterated integral in spherical 
coordinates? 

9.6: Vector-Valued Functions 
• What is a vector-valued function? What do we mean by the graph of a vector-

valued function? 
• What is a parameterization of a curve in ℝ2? In ℝ3? 
• What can the parameterization of a curve tell us? 

9.7: Derivatives and Integrals of Vector-Valued Functions 
• What do we mean by the derivative of a vector-valued function and how do 

we calculate it? 
• What does the derivative of a vector-valued function measure? 
• What do we mean by the integral of a vector-valued function and how do we 

compute it? 
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Exam 2 Outline (Important Concepts and Formulas) 
• Method of Lagrange Multipliers 
• Interpretation of 𝜆 in a 

Lagrange multipliers question 
• Determining if a solution to 

Lagrange multipliers question is 
min or max 

• Double Integrals (numerically) 
• Double integrals over 

rectangles 
• Double integrals over general 

regions 
• Computing double integrals 
• Polar coordinates 
• 𝑑𝐴 in polar coordinates 
• Polar to Cartesian and vice-

versa 
• Mass, area, and center of mass 

computations in 2-D 
• Triple integrals over cuboids 
• Triple integrals over general 

regions 
• Computing triple integrals 
• Cylindrical Coordinates 
• dV in cylindrical coordinates 
• Cartesian to Cylindrical 

coordinate conversions (and 
vice-versa) 

• Spherical Coordinates 
• dV in spherical coordinates 
• Cartesian to Spherical 

coordinates conversions (and 
vice-versa) 

• Vector-valued functions 
• Plots of vector-valued functions 
• Forms of vector-valued 

functions 
• Derivatives of vector-valued 

functions 

• Interpretations of 
derivatives/integrals of vector-
valued functions 

• Integrals of vector-valued 
functions 

• Standard parameterizations 
o Lines 
o (general) circles 
o Unit Circle 
o Graphs of functions of 

the form 𝑦 = 𝑓(𝑥) 
• Derivatives of vector-valued 

functions 
• Interpretations of first, second 

derivatives of a vector-valued 
function 

• Integrals of vector-valued 
functions 




